


dieback in this ‘climate change hotspot’ (Davidson et al., 2012; Diffenbaugh & Giordi 2012). Decreased
seasonal precipitation and warming are already contributing to drought and vegetation stress in this
region (Dai, 2013; Jimenez-Munoz et al., 2016; Lewis et al, 2011; Saatchi et al., 2013). Although future
warming will lead to evaporation increases (Dai, 2013), the duration of precipitation extremes com-
bined with this warming will likely drive a large portion of ecosystem stress, and thus control much
of this region’s carbon storage (Phillips et al., 2009; Tian et al., 1998). Reduced rainfall alone can
increase the risk of fire and forest dieback, which can in turn lead to drought intensification, self-
amplified forest loss, and possibly a deforestation-induced tipping point (Boers et al., 2017; Brando
et al., 2014; Zemp et al., 2017).

Given the possibility that future extreme drought events could destabilize parts of the Amazonian forest
(Zemp et al., 2017), it is critical to understand the future range of drought this vegetation might have to
endure. Instrumental and satellite-based climate records for Amazonia only span the last few decades, high-
lighting the need for high-resolution paleoclimate records to extend our knowledge of past climate further
back in time. To overcome this limitation, we have generated a ∼1,400-year paleohydrological record using
sediments from a rare lowland lake in western Amazonia.

Lake sediments can provide high-resolution archives that can be used
to study catchment-scale to regional-scale environmental change over
a range of time periods, from seasons to millennia (Cohen, 2003;
Davies et al., 2015). Specifically, paleoclimate lake records have been
used to reconstruct pre-instrumental hydroclimatic variability in var-
ious regions around the world. For example, Shanahan et al. (2009)
reconstructed past drought variability in West Africa using oxygen iso-
topes and high-resolution *-x-ray fluorescence (*-XRF) scans of lami-
nated sediments from Lake Bosumtwi. In the Americas, Bird et al.
(2011) used oxygen isotopes from Laguna Pumacocha sediments in
the Central Peruvian Andes to reconstruct past South American mon-
soon variability. Similarly, Haberzettl et al. (2005) reconstructed past
climate variability in southern Argentina, and Metcalfe et al. (2010)
inferred past changes in the northern Mexican monsoon from XRF
scans of sediments.

We expand on recent decades of high-resolution *-XRF research (review by
Davies et al., 2015) to develop a highly resolved record of hydroclimatic
variability in western Amazonia. We compare our paleohydrological record
to a variety of paleoclimate records from tropical South America and to
background drought risk in transient climate simulations driven by full nat-
ural and anthropogenic forcings (Schmidt et al., 2012) to better quantify
the range of drought variability and evaluate extended drought risk in
climate models.

2. Materials and Methods
2.1. Core Retrieval and Study Area

Lake Limón (6°43’S, 76°14’W; 600 m above sea level) is located in
north-central Peru at the base of the eastern flank of the Andes
Mountains on the western edge of the Amazon Basin (Figure 1a).
Lake Limón (∼535 m in length, ∼80 m in width, ∼13.6 m in depth) lies
in a small, crescent-shaped basin with one small, hypersaline stream
entering and exiting the lake (Figure 1b). The clay-rich hillsides sur-
rounding the lake primarily consist of highly eroded sedimentary
rocks. Anoxic waters below ∼5 m depth inhibit bioturbation of lake-
bottom sediments and help to preserve finely laminated sediments
(supporting information Figure S1).

Figure 1. Maps showing regional climatology and paleoclimate record loca-
tions, local topography, and Lake Limón bathymetry. (a) Map of satellite-era
September to March South American GPCP v2.3 precipitation (Adler et al.,
2003) and paleoclimate record locations (citations and other record infor-
mation in Table 1). Red line outlines Amazon River drainage basin and filled
red square indicates Lake Limón location. (b) Contour map of basin around
Lake Limón. (c) Bathymetric map (blue shading) of Lake Limón with red
circles marking coring locations.
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In 2009, we retrieved three piston cores (denoted LP-1 to LP-3), 4–5 m in sediment length from Lake
Limón at a water depth of ∼13 m (Figure 1c). We also retrieved six gravity cores (denoted LU-1 to LU-
6) taken from within 50 m of the piston cores that captured the mud-water interface with minimal mix-
ing. We extruded the top portion of each core at 2.5 mm increments to prevent mixing during transport.
For this study, we produced a composite of LP-3 (4.8 m long) and LU-5 (1.2 m long taken at 12.2 m depth;
Figure 1c) by correlating the two cores where they overlap using both lithologic and chemical tie points
(supporting information Figure S1). Here we have chosen to only analyze Lake Limón data preceding
1972 CE because the extruded sediments at the top of the core were too flocculent to conduct similar
analyses to the lower sediments.

2.2. Dating of Sediments and Age Model

We constructed an age model for the Lake Limón cores using 21 radiocarbon (14C) dates on terrestrial plant
material and 12 210Pbmeasurements on the uppermost sediment in the gravity core (supporting information
Table S1 and Figure 2). We excluded three 14C dates because there was too little carbon to obtain an accurate
date. We also excluded two dates taken on leaves that resulted in outliers implying the leaves were perhaps
re-deposited from shallow areas of the lake (supporting information Table S1).

Pretreatment for radiocarbon samples was performed using the standard acid-base-acid procedure of HCl
and NaOH to remove any carbonates and humic acids (Hedges et al., 1989). The samples were then com-
busted at the University of Arizona Accelerator Mass Spectrometry (AMS) facility. Twelve additional samples,
taken at 20 mm intervals from the top of the gravity core (including extruded sediment), were sent to The
Florida Institute of Paleoenvironmental Research (FLIPER) laboratory at The University of Florida for 210Pb
and 137Cs activity measurement. 210Pb ages were calculated using the constant rate of supply model
(Appleby, 2002; Appleby & Oldfield, 1983). Measured 137Cs values were extremely low and were thus not
included in the age model.

The age model was constructed using a non-Bayesian, ‘classical’ age-depth model program known as clam
(Blaauw, 2010). This software first calibrates 14C dates using the SHCal04 calibration dataset, then produces
a “best fit” age model using a LOESS smooth curve function through both 210Pb and 14C dates (McCormac
et al., 2004). After all age reversals were removed, over 1,000 iterations remained to produce the final age
model (Figure 2).

2.3. Elemental Analysis

We sampled the Lake Limón sediment using well-established *-x-ray fluorescence (*-XRF) methods (e.g.,
Boening et al., 2007; Moreno et al., 2007; Niemann et al., 2009; Shanahan et al., 2008, 2009). We took
thin-sections from both gravity and piston cores then performed acetone exchanges to remove water in
the sediment. We embedded the sediment in resin using standard procedures to reduce noise due to water
formation and surface roughness during *-XRF measurements (Pike & Kemp, 1996). We measured the
elemental abundances of 10 elements (Al, Si, S, K, Ca, Ti, Mn, Fe, Rb, and Sr) using an EDAX Eagle III tabletop
scanning *-XRF analyzer at the University of Arizona (Shanahan et al., 2008).

We used rotated empirical orthogonal functions (EOF, also known as principal components analysis, or
PCA; e.g., North et al., 1982) to determine the primary modes of variability in 10 elemental time series
(Balascio et al., 2011; Shala et al., 2014). We removed the linear trend and normalized all elemental time
series before conducting EOF analysis (supporting information Figure S2). To normalize the elemental
time series prior to EOF analysis, we compared two methods and found minimal changes in our results:
(1) remove the mean and divide by the standard deviation (‘z-score’), (2) employ a modified inverse
Rosenblatt transform to ‘gaussianize’ the data (Van Albada & Robinson, 2007). When we compared Lake
Limón principal component one (PC1) to other time series (Table 1), we binned the data due to age
model uncertainty and accounted for the associated reduced degrees of freedom in our
significance testing.

Many lake sediment XRF studies use elemental ratios to infer past environmental variability (e.g., Davies et al.,
2015), but ‘single element’ XRF studies, in which elemental ratios are not employed, are also common (e.g.,
Balascio & Bradley, 2012; Finkenbinder et al., 2014; Matthews-Bird et al., 2017; Shanahan et al., 2009;). In this
analysis, we use single-element counts (not elemental ratios) to calculate PC1. In Lake Limón, PC1 is strongly
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driven by Ti, which is generally interpreted to be a proxy for runoff and erosion (allochthonous input).
Previous XRF-based studies of lake sediments have found that single-element Ti abundance is associated
with catchment runoff (Balascio and Bradley, 2012; Haberzettl et al., 2005; Matthews-Bird et al., 2017;
Metcalfe et al., 2010).

2.4. Charcoal Analysis

Sediment subsamples of 0.5cm3 were removed for charcoal analyses at 5cm depth intervals (77 samples
spanning ∼560–1972 CE). Samples for charcoal analysis were gently disaggregated in 10% KOH then sieved
at 60 and 180 μm. The retained fraction was placed in a petri dish and the charcoal particles were identified

Figure 2. Lake Limón stratigraphy and age model, including radiocarbon and 210Pb ages. “Best fit” age model produced in
clam with a 2-σ age envelope. Dates in blue were used to create the final age model. Dates in tan were excluded due to
small size. Dates in green were considered outliers and thus excluded. Dates in dark gray were taken on bulk sediment and
were thus excluded. Inset shows 210Pb dates with 1-σ error bars.

Table 1
Data Sources, Locations, Temporal Coverage, and Relationships With Lake Limón Principal Components 1 and 2

Data
Source/
Citation

Correlation:
PC1

Correlation:
PC2

Lat
(°N)

Lon
(°E)

Altitude
(m)

Time (CE)
Start:End

Trop. N Atlantic NOAAERSSTv4 �0.59 0.31 6:22 �80:�30 Sea Surface 1854:2014
Niño3.4 NOAAERSSTv4 �0.15 �0.25 �5:5 �170:�120 Sea Surface 1854:2014
Local Precipitation GPCCv7 0.65 0.37 �8:�7 �77:�75 ∼600 1901:2014
Rio Negro Flow HidroWeb/Manaus 0.13 �0.08 �3.13 �60.01 ∼10 1902:2015
N. Atl. SST Recons. Gray et al. �0.21 �0.27 0:70 N/A N/A 1567:1990
Palestina δ18O Apaestegui et al. 0.12 0.06 �5.92 �77.35 870 421:1928
Cascayunga δ18O Reuter et al. 0.26 0.07 �6.07 �77.18 900 1088:1907
Sauce Redness Bush et al. �0.14 �0.26 �6.71 �76.23 600 �3054:1999
Limón Elemental *-XRF This study N/A N/A �6.71 �76.23 600 564:1972
Cariaco SST Black et al. 0.13 0.23 10.76 �64.70 �450 1221:1990
Cariaco %Ti Haug et al. 0.19 0.12 10.70 �65.16 �893 �12327:1840
Pumacocha δ18O Bird et al. �0.01 �0.15 �10.71 �76.06 4300 �277:2007
Huagapo δ18O Kanner et al. 0.08 �0.15 �11.27 �75.79 3850 559:2000
Tree δ18O (Bolivia) Brienen et al. �0.42 �0.06 �11.40 �68.72 240 1901:2001
Quelccaya δ18O Thompson et al. 0.06 0.09 �13.93 �70.83 5670 226:2009
Diva de Maura δ18O Novello et al. �0.17 0.16 �12.37 �41.57 680 �815:1911
Tree δ18O (Peru) Ballantyne et al. �0.04 0.22 �12.60 �69.20 265 1820:2004
Pau d’Alho δ18O Novello et al. 0.07 0.11 �15.21 �56.81 540 492:1860
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and quantified under a stereomicroscope (Clark & Royal; 1996). All charcoal values are reported as counts of
charcoal fragments per 1cm3. Charcoal data are shown here in 40-year bins to account for any possible age
model uncertainty between sediment cores.

2.5. Power Spectra Estimation in Paleoclimate and Climate Model Data

We could not directly compare the time evolution of CoupledModel Intercomparison Project Phase 5 (CMIP5)
and paleoclimate time series due to the uncertainties associated with external forcing, unknown initial con-
ditions, and the independent evolution of internal variability. Instead we compared simulated and observed
records in the frequency domain. We used previously established methods (Ault et al., 2013) to calculate and
analyze the variance spectra of precipitation from CMIP5 Last Millennium (‘past1000’) (Schmidt et al., 2012)
and CMIP5 pre-industrial control model simulations (Taylor et al., 2012), as well as multiple hydroclimate-
sensitive paleoclimate records from around tropical South America (Table 1). We used the Lomb-Scargle
method (Lomb, 1975; Scargle, 1982) to estimate the power spectra in both paleoclimate as well as climate
model data; this technique is often employed with unevenly sampled paleoclimate data. We normalized all
time series by removing the mean and dividing by the standard deviation of the full time series (‘z-score’)
before performing spectral analysis. We limited our analysis to paleoclimate and model data for the time
period 850–1850 CE to exclude any significant influences of anthropogenic climate change. We calculated
climate model precipitation spectra from model grid boxes closest to Lake Limón in western Amazonia
(8°S-5°S, 77°W-73°W) and also for the Amazon Basin (12°S-3°N, 72°W-48°W) to test if simulated precipitation
variability was sensitive to its proximity to the Amazon-Andes transition zone.

2.6. Drought Assessment

CMIP5 simulated precipitation drought lengths were calculated frommodel grid boxes closest to Lake Limón
in western Amazonia (8°S-5°S, 77°W-73°W). Lake Limón-inferred droughts were calculated over 850–1850 CE
to overlap with model data. Droughts were defined as a unique instance when the 5-year running mean of
the time series crossed the threshold one standard deviation (-1σ) or two standard deviations (-2σ) below
the long-term mean (850–1850 CE).

3. Data
3.1. Gridded Instrumental-Based Data

We compared 1°x1° resolution gridded GPCCv7 precipitation over tropical South America to NOAA ERSSTv4
tropical North Atlantic and tropical Pacific sea-surface temperatures (SST) to study the drivers of interannual
hydroclimatic variability during the time period 1901–2014 CE (Huang et al., 2015; Schneider et al., 2014)
(Figure 3). We also compared Lake Limón principal component data to gridded GPCCv7 precipitation
(∼1901–1972 CE overlap) and NOAA ERSSTv4 SST (∼1854–1972 CE overlap) data. We show the climatological

Figure 3. Correlation between sea-surface temperature and September-March interannual precipitation 1901–2014 CE.
(a) Tropical North Atlantic (NAtl) SST and September-March precipitation and (b) Niño3.4 SST and September-March
precipitation 1901–2014CE. Red box marks location of Lake Limón, red line outlines the Amazon River drainage basin, and
black dots indicate correlations at the 95% significance level. All correlations calculated using 5-year bins to match with
proxy-observation correlation analysis.

10.1029/2017WR021788Water Resources Research

PARSONS ET AL. 5894


